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Abstract. The two-parametric quantum superalgebraUp,q [gl(2/1)] is consistently defined. A
construction procedure for induced representations ofUp,q [gl(2/1)] is described and allows
us to construct explicitly all (typical and non-typical) finite-dimensional representations of this
quantum superalgebra. In spite of some specific features, the present approach is similar to a
previously developed method which, as shown here, is applicable not only to the one-parametric
quantum deformations but also to the multi-parametric ones.

1. Introduction

In [1], we suggested a method for explicit constructions of representations of the one-
parametric quantum superalgebrasUq [gl(m/n)]. When applied toUq [gl[(2/2)], this method
allowed us to construct explicitly all (typical [1] and non-typical [2]) finite-dimensional
representations of the latter quantum superalgebra. Certainly, as emphasized in [1] and [2],
our method is also applicable for other quantum superalgebras and we could construct their
representations in a similar way. In particular, we can apply the method to, for example,
multi-parametric quantum superalgebras [3–6], etc. The multi-parametric deformations were
introduced in [7] and since considered by a number of authors from different points of view
(see, for example, [3–15]). However, in spite of progress in several aspects (e.g., group-
space structures, differential calculus, exponential maps, etc) representation theory is only
well developed for a few simple cases likeUp,q [su(2)] (see for example [8]),Up,q [sl(2/1)]
[6], etc. Here, in order to show once again the usefulness of the above-mentioned method
we consider, as a further example, the two-parametric quantum superalgebraUp,q [gl(2/1)]
which, although it resembles the one-parametric quantum superalgebraU√

pq [gl(2/1)],
cannot be identified with the latter. In this paper we suppose that bothp andq are generic,
i.e. not roots of unity. Following the approach of [1] we can construct direct and explicit
representations of the quantum superalgebraUp,q [gl(2/1)] induced from some (usually,
irreducible) finite-dimensional representations of the even subalgebraUp,q [gl(2) ⊕ gl(1)].
Since the latter is a stability subalgebra ofUp,q [gl(2/1)] we expect the constructed induced
representations ofUp,q [gl(2/1)] to be decomposed into finite-dimensional irreducible
representations ofUp,q [gl(2) ⊕ gl(1)]. For this purpose we shall introduce aUp,q [gl(2/1)]
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basis (i.e. a basis within aUp,q [gl(2/1)] module or briefly a basis ofUp,q [gl(2/1)]) which
will be convenient for us in investigating the module structure. This basis (see (3.10)) can
be expressed in terms of some basis of the even subalgebraUp,q [gl(2) ⊕ gl(1)] which in
turn represents a (tensor) product between aUp,q [gl(2)] basis and agl(1) factor. It will be
shown that the finite-dimensional representations ofUp,q [gl(2)], i.e. of Up,q [gl(2)⊕gl(1)],
can be realized in the Gel’fand–Zetlin (GZ) basis. The finite-dimensional representations
of Up,q [gl(2/1)] constructed are irreducible and can be decomposed into finite-dimensional
irreducible representations of the subalgebraUp,q [gl(2) ⊕ gl(1)].

In section 2 we shall define the quantum superalgebraUp,q [gl(2/1)] and consider
how to construct its representations induced from representations of the subalgebra
Up,q [gl(2) ⊕ gl(1)]. Finite-dimensional representations ofUp,q [gl(2/1)] are constructed
in section 3 where the above-mentioned appropriate basis is described. The conclusion and
some comments are given in section 4.

Throughout the paper we shall frequently use the following notation:

[x] ≡ [x]p,q := qx − p−x

q − p−1
(1.1)

for quantum deformations ofx which are operators or numbers,

[X, Y ]r := XY − rYX (1.2)

for r-deformed commutators between two operatorsX andY and

[m] (1.3)

for the highest weights (signatures) of the Gel’fand–Zetlin basis vectors(m). We hope that
this notation will not confuse the reader.

2. Up,q[gl(2/1)] and its induced representations

The two-parametric quantum superalgebraUp,q [gl(2/1)] is consistently defined through the
generatorsE12, E21, E23, E32, Eii , i = 1, 2, 3, andL satisfying

(i) the super-commutation relations (16 i, i + 1, j, j + 1 6 3):

[Eii, Ejj ] = 0 (2.1a)

[Eii, Ej,j+1] = (δij − δi,j+1)Ej,j+1 (2.1b)

[Eii, Ej+1,j ] = (δi,j+1 − δij )Ej+1,j (2.1c)

[L, E12] = [L, E21] = [L, Eii ] = 0 (2.1d)

[E12, E32] = [E21, E23] = 0 (2.1e)

[E12, E21] =
(

q

p

)L−h1/2

[h1] (2.1f)

{E23, E32} =
(

q

p

)−h2/2

[h2] (2.1g)

hi =
(

Eii − di+1

di

Ei+1,i+1

)
(2.1h)

with d1 = d2 = −d3 = 1; and
(ii) the Serre relations:

E2
23 = E2

32 = 0 [E12, E13]p = 0 [E21, E31]q = 0 (2.2)
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where

E13 := [E12, E23]q−1 (2.3a)

and

E31 := −[E21, E32]p−1. (2.3b)

are defined as new odd generators which, as we can show, have vanishing squares. Now
the extra Serre relations are not necessary, unlike in higher rank cases [1, 2, 16]. The
commutators between the maximal-spin operatorL and the odd generators take concrete
forms on concrete basis vectors.

These generatorsEij , i, j = 1, 2, 3, are two-parametric deformation analogues of the
Weyl generatorseij

(eij )kl = δikδjl i, j, k, l = 1, 2, 3 (2.4)

of the classical (i.e. non-deformed) superalgebragl(2/1) whose universal enveloping algebra
U [gl(2/1)] is a classical limit ofUp,q [gl(2/1)] when p, q → 1.

From the relations (2.1)–(2.3) we see that each of the odd spacesA±
A+ = lin.env.{E13, E23} (2.5)

A− = lin.env.{E31, E32} (2.6)

is, as always, a representation space of the even subalgebraUp,q [gl(2/1)0] ≡ Up,q [gl(2) ⊕
gl(1)] which, generated by the generatorsE12, E21, L and Eii , i = 1, 2, 3, is a stability
subalgebra ofUp,q [gl(2/1)]. Therefore, we can construct representations ofUp,q [gl(2/1)]
induced from some (finite-dimensional irreducible) representations ofUp,q [gl(2/1)0] which
are realized in some representation spaces (modules)V

p,q

0 being tensor products of
Up,q [gl(2)] modulesV

p,q

0,gl2
andgl(1) modules (factors)V p,q

0,gl1
. Following [1] we demand

E23V
p,q

0 = 0 (2.7)

that is

Up,q(A+)V
p,q

0 = 0. (2.8)

In such a way we turn theUp,q [gl(2/1)0] moduleV
p,q

0 into a Up,q(B) module where

B = A+ ⊕ gl(2) ⊕ gl(1). (2.9)

TheUp,q [gl(2/1)] moduleWp,q induced from theUp,q [gl(2/1)0] moduleV
p,q

0 is the factor
space

Wp,q = [Up,q ⊗ V
p,q

0 ]/Ip,q (2.10)

where

Up,q ≡ Up,q [gl(2/1)] (2.11)

while Ip,q is the subspace

Ip,q = lin.env.{ub ⊗ v − u ⊗ bv‖u ∈ Up,q, b ∈ Up,q(B) ⊂ Up,q, v ∈ V
p,q

0 }. (2.12)

Using the above-given commutation relations (2.1)–(2.2) and the definitions (2.3) we
can prove the following analogue of the Poincaré–Birkhoff–Witt theorem.

Proposition 1. The quantum deformationUp,q := Up,q [gl(2/1)] is spanned on all possible
linear combinations of the elements

g = (E23)
η1(E13)

η2(E31)
θ1(E32)

θ2g0 (2.13)

whereηi , θi = 0, 1 andg0 ∈ Up,q [gl(2/1)0] ≡ Up,q [gl(2) ⊕ gl(1)].
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Then we arrive at the next assertion:

Proposition 2. The inducedUp,q [gl(2/1)] moduleWp,q is the linear span

Wp,q([m]) = lin.env.{(E31)
θ1(E32)

θ2 ⊗ v‖v ∈ V
p,q

0 , θ1, θ2 = 0, 1} (2.14)

which is decomposed into (four, at most) finite-dimensional irreducible modulesV
p,q

k of
the even subalgebraUp,q [gl(2/1)0]

Wp,q([m]) =
⊕

06k63

V
p,q

k ([m]k) (2.15)

where [m] and [m]k are some signatures (highest weights) characterizing the module
Wp,q ≡ Wp,q([m]) and the modulesV p,q

k ≡ V
p,q

k ([m]k), respectively.

As a consequence, for a basis inWp,q we can take all the vectors of the form

|θ1, θ2; (m)〉 := (E31)
θ1(E32)

θ2 ⊗ (m) θ1, θ2 = 0, 1 (2.16)

where(m) is a (GZ, for example) basis inV p,q

0 ≡ V
p,q

0 ([m]). We refer to this basis as the
inducedUp,q [gl(2/1)] basis (or simply, the induced basis) in order to distinguish it from
anotherUp,q [gl(2/1)] basis introduced later and called a reduced basis.

Any vectorw from the moduleWp,q can be represented as

w = u ⊗ v u ∈ Up,q v ∈ V
p,q

0 . (2.17)

ThenWp,q is a Up,q [gl(2/1)] module in the sense

gw ≡ g(u ⊗ v) = gu ⊗ v ∈ Wp,q (2.18)

for g, u ∈ Up,q , w ∈ Wp,q andv ∈ V
p,q

0 .

3. Finite-dimensional representations ofUp,q[gl(2/1)]

We can show that finite-dimensional representations ofUp,q [gl(2/1)0] can be realized in
some spaces (modules)V

p,q

k spanned by the (tensor) products[
m12 m22

m11
; m32 = m31

m31

]
≡

[
[m]2

m11
; [m]1

m31

]
≡ (m)gl(2) ⊗ m31 ≡ (m)k (3.1a)

between the (GZ) basis vectors(m)gl(2) of Up,q [gl(2)] and thegl(1) factorsm31, wheremij

are complex numbers such that

m12 − m11, m11 − m22 ∈ Z+ (3.1b)

and

m32 = m31. (3.1c)

Indeed, any finite-dimensional representation of (not only)Up,q [gl(2)] is always highest
weight and if the generatorsL, Eij , i, j = 1, 2 andE33 are defined on (3.1) as follows

E11(m)k = (l11 + 1)(m)k

E22(m)k = (l12 + l22 − l11 + 2)(m)k

E12(m)k = ([l12 − l11][ l11 − l22])1/2(m)+11
k

E21(m)k = ([l12 − l11 + 1][l11 − l22 − 1])1/2(m)−11
k

L(m)k = 1
2(l12 − l22 − 1)(m)k

E33(m)k = (l31 + 1)(m)k (3.2a)

lij = mij − (i − 2δi,3) (3.2b)
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where a vector(m)k
±ij is obtained from(m) by replacingmij with mij ± 1, they really

satisfy the commutation relations (2.1a–e) for Up,q [gl(2/1)0]. The highest weight described
by the first row (signature)

[m]k = [m12, m22, m32] (3.3)

of the patterns (3.1) is nothing but an ordered set of the eigenvalues of the Cartan generators
Eii , i = 1, 2, 3, on the highest-weight vector(M)k defined as follows

E12(M)k = 0 (3.4)

Eii(M)k = mi2(M)k (3.5)

The highest-weight vector(M)k can be obtained from(m)k by settingm11 = m12:

(M)k =
[

m12 m22

m12
; m32 = m31

m31

]
. (3.6)

A lower-weight vector(m)k can be derivedvice versafrom (M)k by the formula

(m)k =
(

[m11 − m22]!

[m12 − m22]![ m12 − m11]!

)1/2

(E21)
m12−m11(M)k. (3.7)

In particular, for the casek = 0, instead of the above notation we omit the subscript 0, i.e.

(m)0 ≡ (m) [m]0 ≡ [m] (M)0 ≡ (M) (3.8)

putting

mi2 = mi3 i = 1, 2, 3 (3.9)

wheremi3 are some of the complex values ofmi2, therefore,m13 − m11, m11 − m23 ∈ Z+.
We emphasize that [m] and (M), because of (2.7), are also, respectively, the highest
weight and the highest-weight vector in theUp,q [gl(2/1)] module Wp,q = Wp,q([m]).
Characterizing the latter module as the whole, [m] and (M) are, respectively, referred to as
the global highest weight and the global highest-weight vector, while [m]k and (M)k are,
respectively, the local highest weights and the local highest-weight vectors characterizing
only the submodulesV p,q = V p,q([m]k).

Following the arguments in [1], for an alternative with (2.16) basis ofWp,q we can
choose the union of all the bases (3.1) which are denoted now by the patterns[

m13 m23 m33

m12 m22 m32

m11 0 m31

]
k

≡
[

m12 m22

m11
; m32 = m31

m31

]
k

≡ (m)k (3.10)

where the first row [m] = [m13, m23, m33] is simultaneously the highest weight of the
submoduleV p,q = V p,q([m]) and the whole moduleWp,q = Wp,q([m]), while the second
row [m]k = [m12, m22, m32] is the local highest weight of someUp,qgl[(2/1)0] module
V

p,q

k = V
p,q

k ([m]k) containing the considered vector(m)k. The basis (3.10) ofWp,q is
called theUp,q [gl(2/1)] reduced basis or simply the reduced basis. The latter, as mentioned
before and shown later, is convenient for us in investigating the module structure ofWp,q .
Note once again that the condition

m32 = m31 (3.1a)

has always to be fulfilled.
The highest-weight vectors(M)k, now, in the notation (3.10), have the form

(M)k =
[

m13 m23 m33

m12 m22 m32

m12 0 m31

]
k

(3.11)

as fork = 0 the notation given in (3.8) and (3.9) is also taken into account.
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Proposition 3. The highest-weight vectors(M)k are expressed in terms of the induced
basis (2.16) as follows

(M)0 = a0|0, 0; (M)〉 a0 ≡ 1

(M)1 = a1|0, 1; (M)〉
(M)2 = a2{|1, 0, ; (M)〉 + q2l [2l]−1/2|0, 1; (M)−11〉}
(M)3 = a3{|1, 1; (M)〉} (3.12a)

whereai , i = 0, 1, 2, 3, are some numbers depending, in general, onp andq, while l is

l = 1
2(m13 − m23). (3.12b)

Indeed, all the vectors(M)k given above satisfy the condition (3.4). From the formulae
(3.5) and (3.12) the highest weights [m]k can be easily identified

[m]0 = [m13, m23, m33]

[m]1 = [m13, m23 − 1, m33 + 1]

[m]2 = [m13 − 1, m23, m33 + 1]

[m]3 = [m13, m23, m33 + 2]. (3.13)

Using the rule (3.7) we obtain all the basis vectors(m)k:

(m)0 ≡
[

m13 m23 m33

m13 m23 m33

m11 0 m33

]
= |0, 0, ; (m)〉

(m)1 ≡
[

m13 m23 m33

m13 m23 − 1 m33 + 1
m11 0 m33 + 1

]

= a1

{
−

(
[l13 − l11]

[2l + 1]

)1/2

|1, 0; (m)+11〉 +p2(l11−l13)

(
[l11 − l23]

[2l + 1]

)1/2

|0, 1; (m)〉
}

(m)2 ≡
[

m13 m23 m33

m13 − 1 m23 m33 + 1
m11 0 m33 + 1

]

= a2

{ (
p

q

)l13−l11−1 (
[l11 − l23]

[2l]

)1/2

|1, 0; (m)+11〉

+ql13−l23−1pl11−l13+1

(
[l13 − l11]

[2l]

)1/2

|0, 1; (m)〉
}

(m)3 ≡
[

m13 m23 m33

m13 − 1 m23 − 1 m33 + 2
m11 0 m33 + 2

]
= a3|1, 1; (m)〉 (3.14)

where lij and l are given in (3.2b) and (3.12b), respectively. Here, we omit the subscript
k in the above patterns since there is no degeneration between them. Formulae (3.14), in
fact, represent the way in which the reduced basis (3.10) is written in terms of the induced
basis (2.16). From (3.14) we can derive the inverse relation

|0, 0; (m)〉 = (m)0 ≡ (m)

|1, 0; (m)〉 = − 1

a1
ql11−l23−1

(
[l13 − l11 + 1]

[2l + 1]

)1/2

(m)−11
1

+ 1

a2p
ql11−l13

([l11 − l23 − 1][2l])1/2

[2l + 1]
(m)−11

2
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|0, 1; (m)〉 = 1

a1

(
[l11 − l23]

[2l + 1]

)1/2

(m)1 + 1

a2

(
q

p

)l11−l13+1
([l13 − l11][2l])1/2

[2l + 1]
(m)2

|1, 1; (m)〉 = 1

c3
(m)−11

3 . (3.15)

Now we are ready to compute all the matrix elements of the generators in the basis
(3.10). As we shall see, the latter basis allows a clear description of a decomposition of a
Up,q [gl(2/1)] module Wp,q in irreducibleUp,q [gl(2/1)0] modulesV

p,q

k . Since the finite-
dimensional representations of theUp,q [gl(2/1)] in some basis are completely defined by
the actions of the even generators and the odd Weyl–Chevalley onesE23 and E32 in the
same basis, it is sufficient to write down the matrix elements of these generators only. For
the even generators the matrix elements have already been given in (3.2), while forE23 and
E32, using the relations (2.1)–(2.3), (3.14) and (3.15) we have

E23(m) = 0

E23(m)1 = a1

(
p

q

)l23+l33+3 (
[l11 − l23]

[2l + 1]

)1/2

[l23 + l33 + 3](m)

E23(m)2 = a2

(
p

q

)l23+l33+4 (
[l13 − l11]

[2l]

)1/2

[l13 + l33 + 3](m)

E23(m)3 = a3

(
p

q

)l13+l23+l33−l11+2 {
1

a1q

(
[l13 − l11]

[2l + 1]

)1/2

[l13 + l33 + 3](m)1

− 1

a2p
([l11 − l23][2l])1/2 [l23 + l33 + 3]

[2l + 1]
(m)2

}
(3.16a)

and

E32(m) = 1

a1

(
[l11 − l23]

[2l + 1]

)1/2

(m)1 + 1

a2

(
p

q

)l13−l11−1
([l13 − l11][2l])1/2

[2l + 1]
(m)2

E32(m)1 = a1

a3
p

(
[l13 − l11]

[2l + 1]

)1/2

(m)3

E32(m)(2) = −a2

a3
p

(
q

p

)l13−l11−1 (
[l11 − l23]

[2l]

)1/2

(m)3

E32(m)3 = 0. (3.16b)

Proposition 4. The finite-dimensional representations (3.16) ofUp,q [gl(2/1)] are
irreducible and called typical if and only if the condition

[l13 + l33 + 3][l23 + l33 + 3] 6= 0 (3.17)

holds.

When this condition (3.17) is violated, i.e. one of the following condition pairs

[l13 + l33 + 3] = 0 (3.18a)

and

[l23 + l33 + 3] 6= 0 (3.18b)

or

[l13 + l33 + 3] 6= 0 (3.19a)
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and

[l23 + l33 + 3] = 0 (3.19b)

(but not both (3.18a) and (3.19b) simultaneously) holds, the moduleWp,q is no longer
irreducible but indecomposable. However, there exists an invariant subspace, sayI

p,q

k , of
Wp,q such that the factor representation in the factor module

W
p,q

k := Wp,q/I
p,q

k (3.20)

is irreducible. We say that is a non-typical representation in a non-typical moduleW
p,q

k .
Then, as in [2], it is not difficult for us to prove the following assertions:

Proposition 5.

V
p,q

3 ⊂ I
p,q

k (3.21)

and

V
p,q

0 ∩ I
p,q

k = ∅. (3.22)

From (3.16)–(3.19) we can easily find all non-typical representations ofUp,q [gl(2/1)]
which are classified into two classes.

3.1. Class 1 non-typical representations

This class is characterized by the conditions (3.18a) and (3.18b) which, for genericp and
q, take the forms

l13 + l33 + 3 = 0 (3.18x)

and

l23 + l33 + 3 6= 0 (3.18y)

respectively. In other words, we have to replace everywhere allm33 by −m13 − 1 and keep
(3.18y) valid. Thus we have

Proposition 6.

I
p,q

1 = V
p,q

3 ⊕ V
p,q

2 . (3.23)

Then the class 1 non-typical representations in

W
p,q

1 = W
p,q

1 ([m13, m23, −m13 − 1]) (3.24)

are given through (3.16) by keeping the conditions (3.18) (i.e. (3.18x) and (3.18y)) and
replacing all vectors belonging toIp,q

1 with 0:

E23(m) = 0

E23(m)1 = a1

(
p

q

)l23−l13
(

[l11 − l23]

[2l + 1]

)1/2

[l23 − l13](m) (3.25a)

and

E32(m) = 1

a1

(
[l11 − l23]

[2l + 1]

)1/2

(m)1

E32(m)1 = 0. (3.25b)
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3.2. Class 2 non-typical representations

For this class non-typical representations we must keep the conditions

l13 + l33 + 3 6= 0 (3.19x)

and

l23 + l33 + 3 = 0 (3.19y)

derived, respectively, from (3.19a) and (3.19b) when the deformation parametersp andq

are generic. Equivalently, we have to replace everywhere allm33 by −m23 and keep (3.19x)
valid.

Now the invariant subspaceIp,q

2 is the following

Proposition 7.

I
p,q

2 = V
p,q

3 ⊕ V
p,q

1 . (3.26)

The class 2 non-typical representations in

W
p,q

2 = W
p,q

2 ([m13, m23, −m23]) (3.27)

are also given through (3.16) but by keeping the conditions (3.19) (i.e. (3.19x) and (3.19y))
valid and replacing all vectors belonging to the invariant subspaceI

p,q

2 by 0:

E23(m) = 0

E23(m)2 = a1
p

q

(
[l13 − l11]

[2l]

)1/2

[2l + 1](m) (3.28a)

and

E32(m) = 1

a2

(
p

q

)l13−l11−1
([l13 − l11][2l])1/2

[2l + 1]
(m)2

E32(m)2 = 0. (3.28b)

In order to complete this section we emphasize that non-typical representations have
only been well investigated for a few cases of both classical and quantum superalgebras
(see, in this context, the conclusion in [2] and also some comments in [17]). Therefore, the
present results can be considered as a small step forward in this direction.

4. Conclusion

We have just defined the two-parametric quantum superalgebraUp,q [gl(2/1)] and
constructed for generic deformation parameters all its typical and non-typical representations
leaving the coefficientsai , i = 1, 2, 3, as free parameters which can be fixed by some
additional conditions, for example, the Hermiticity condition. As an intermediate step
(which, however, is of independent interest) we also introduced the reduced basis (3.10)
which, as it is an extension of the Gel’fand–Zetlin basis to the present case, is appropriate
for a clear description of the decompostions ofUp,q [gl(2/1)] modules in irreducible
Up,q [gl(2/1)0] modules. Although the present approach has some specific features it is
similar to the one in [1]. This shows once again the usefulness of the method in [1]
which is thus applicable not only to one-parametric quantum deformations but also to
multi-parametric ones.
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As the general procedure has been given, the next step is to consider the case of
non-genericp and q or to construct representations of larger quantum superalgebras like
Up,q [gl(n/1)], Up,q [gl(n/m)], etc for both generic and non-generic deformation parameters.
Let us emphasize once again that our approach avoids the use of the Clebsch–Gordan
coefficients which are not always known, especially for higher-rank (classical and quantum)
algebras and multi-parametric deformations.
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